STEM Career Tours

Inspiring the pursuit of science, technology, engineering and math literacy, skills, and careers.

Page 2 of 4

Carbon Technology

Pioneering a Better World


As part of the STEM Career Tours, the students at Providence Heights Alpha School had the honor of visiting a company that has made it their mission for making the world a better place through carbon technologies. During World War 2, the military asked the Pittsburgh Coke and Chemical to develop a new material to use in gas masks to filter out the contaminants. It was there that the Calgon Carbon Corporation was formed with the goal of revolutionizing carbon technologies. The Calgon Carbon Corporation has made it their mission to protect people and the environment from contaminants in water, air, food and industrial processes. They do this through their various carbon technologies that use activated carbon. What is activated carbon? Activated carbon is a porous material that removes organic compounds from liquids and gases by a process that is known as adsorption. Through this process, the organic molecules contained in a liquid or gas are attracted and bound to the surface of the pores of the activated carbon as the liquid or gas is passed through it. Our students were amazed by what we saw at Calgon Carbon and were truly inspired by what the company is achieving. Most of the students had never heard of these processes before and were very interesting in learning further details by asking questions to our tour guides.

The end goal for Calgon Carbon is to create a cleaner and better world for people to enjoy. Their message to the students was not only inspiring, but also encouraging. The students enjoyed learning about how important the use of carbon technology is in our world, and how much contaminants can be found in everyday products and processes. We thank Calgon Carbon for taking the time out of their day to accommodate us and really appreciate them educating the students on their products and mission.


Science in the Lab

Citizen Science Lab

As part of the STEM Career Tours, we took an exciting stop at one of Pittsburgh’s best laboratories for those interested in STEM. The tour was led by Carrianne Floss, who is the program coordinator for the Citizen Science Lab. The lab is used to learn about the life sciences. The student’s got a chance to hear about the wonderful camps and event that the lab offers throughout the year, as well as get a chance to see the facility. We also got to hear about some interesting developments in science such as bio blocks. Perhaps the most exciting part of the day for the students was when they got a chance to see all of the resident pets that the lab and see all of the equipment that can be used by the students in the future. The Citizen Science Lab is open to everyone from middle school to high school students, educators to parents, and undergraduate and graduate students. All are welcome to use and discover new possibilities using the lab. The obvious high point of the day was when the students got to meet the snake they had at the lab. Everyone was super excited to meet him and it definitely put a smile on all of the student’s faces!

Inspiring by Doing

The mission of The Citizen Science Lab is to offer a hands-on laboratory where people from all over can come to explore and learn all about the life sciences. Their message is that through hands-on learning, students of all ages will learn more by doing. When students are hands on with the projects they are working on, it is typically a more inspiring experience for them because they are actually working on something and not just being lectured about it. The Citizen Science Lab also works on doing summer camps, that teach in all aspects of science from zoology, to 3d printing, and even to microbiology. It is clear that the Citizen Science Lab is doing everything they can to inspire the next generation of STEM students and we were truly blessed to be a part of their day and to learn about what they do.

A Trip to Millie’s Ice Cream

Getting a Cone

STEM Career Tours had the pleasure of taking a look at Millie’s Ice Cream with the Providence Heights Alpha School. Going along with the tour was their teacher, Mr. Beeaham, and together we explored the wonderful process of how Millie’s Ice Cream makes their famous ice cream! Not only did we go to the storefront to see how it is distributed, but we also found out how they make their ice cream.

The student’s enjoyed seeing the process of how one of their favorite foods was prepared, and really took a liking to what science applications were being applied to the ice cream making process. The process really inspired the kids and they asked plenty of questions along the way. Millie’s was impressed with how eager the students were to learn about ice cream!

One of the key features that Millie’s prides itself in is their use of fresh and natural ingredients. Millie’s truly believes that other ice cream companies are being “lazy” and try to take shortcuts when making their products. The shortcuts might be more cost efficient, but the quality of the product just won’t compare with a company like Millie’s that does everything correctly. Millie’s makes small batches of their product so they can ensure that every part of the process is done naturally and that there are no preservatives and no cheating done.

The Science of Ice Cream

The basic components in the making of ice cream are ice crystals, fat, sweeteners, and air. Ice crystals are formed when the base of the product starts to freeze and it gives a solid body to the ice cream. The fat adds the richness to the ice cream, and the sweeteners come in the form of either sugar, honey, or syrup.

The process of making it starts with preparing the liquid base of the ice cream. Then, it goes through pasteurization, which heats the liquid to eliminate all of the bacteria in the product. Then comes the homogenization, which is when the fat is broken up and dispersed throughout the liquid. This is done by churning, and this is when the ice cream starts to thicken up. After it ages and matures for a while, it goes into the freezing process and then it eventually hardens into the ice cream we all know and love.

The texture of the ice cream is all dependent on the type of cream that is used in the process. The higher the fat content you have in the cream, the better the texture you will have for the final project. The more fat you have in the product, the richer the ice cream comes out, and the less fat you have, the creamier and lighter the product will be.

There are many STEM principles found in the making of ice cream, the students had a blast learning about ice cream and seeing it made!

ContainerShip: Programming in the Cloud

On Friday, February 17th, 2017, several North Catholic students began their venture into the Computer Science field with a visit to ContainerShip. Found in Oakland Pittsburgh, ContainerShip is a Multi-Cloud Automated Server, in other words ContainerShip gets rid of the hassle and brings anything you could desire onto the Internet and into the public’s hands.

Being a computer programmer no longer means sitting in a dark room typing endless series of code. ContainerShip has a very modern and comfortable environment for its employees. Between the pleasant gleeful environment and the Ping-Pong and Foosball tables one can quickly see how enjoyable and rewarding a job in the computer science field is. Once we were there and had a quick peek around, ContainerShip’s CEO, Phil Dougherty, took us into their meeting room and began breaking down what their operation exactly is. He gave the students some background of himself and the company and how they monitor and aid in traffic conditions for other websites and Internet applications.

Phil Dougherty explained how there is traffic when it comes to the Internet, sometimes a website may undergo millions of visits from different users in a sort of rush hour sense while on the contrary the same website may experience times when there is no one on their website. ContainerShip aids in traffic control by opening up more servers and connections like roads for the traffic to go through so the website or app can maintain peak performance.

From beginning as a hobby to becoming a company collaborating with some biggest leaders of industry, Phil Dougherty and his team showed us how rewarding and beneficial to society someone in the computer science field is.

Ascender: The Startup for Startups

Cardinal Wuerl North Catholic’s AP Computer Science Principles class recently toured the offices of Ascender in Pittsburgh. Ascender is the next step in evolution of venture capitalism growing out the work the company did under the name Thrill Mill. Instead of merely providing funds for companies to begin work on making a viable product, Ascender takes this much farther. In addition to capital, they provide everything from mentoring and leadership to office space and team building resources. Moreover, they are continuing to find ways to do so much more.

Leading the tour was Jennifer Sharpe, Program Manager for Ascender, who also gave an informative and stimulating presentation on everything that Ascender does to help make STEM based industry in the city of Pittsburgh grow. As a part of the presentation, she had the students participate in an exercise mirroring the process by which companies are selected for Ascender’s incubation chamber. The students were given three pitches by various potential companies, including team members, and the product idea. After careful consideration, the determination had to be made as to which idea was most viable to make a profit.

Jennifer also included information on “Thrival,” Ascender’s yearly music festival and innovation conference. Part of the mission of Ascender is to help usher in a new wave of modern industry. By converting an old Steel Mill into a place where people can come together with new ideas, Ascender is poised to help bring Pittsburgh into the here and now of STEM industry.
After the presentation, the students were able to walk around and see first hand the office space and workstations the ascender has to offer, as well as a few of the companies currently utilizing Ascender’s services to make their dreams a reality.

CADD Connections: Cadnetics

One of the most gratifying moments for a teacher is to see students engaged in purposeful wonder.  I saw this in my students’ interaction with James Mauler and Travis Johnson, the president and vice president of Cadnetics respectively. Facilitated by STEM Career Tours, students enrolled in the Introduction to Computer-Aided Design and Drafting (CADD) course at Cardinal Wuerl North Catholic High School were able to see how their newly acquired skills are put to work in Greater Pittsburgh.  This blog will highlight student experiences on the final stop of the STEM tour, Cadnetics.

The use and application of technology captured students’ attention during our visit with James and Travis.  They witnessed a laser scanner render a three-dimensional model of the room they were in.  The model was created and could then be manipulated using similar CADD software to what we use in the classroom.  Of course, I had to deflect questions like, “why don’t we have a laser scanner at school,” and “why can’t we make models like this!”  But, these questions reflect a level of interest and engagement I had not seen in the classroom.

The curriculum at CWNCHS emphasizes the capability of computers to increase, Precision, Efficiency, and Communication in the design process.  Of these three, Communication in design was demonstrated at Cadnetics.  We learned that the company provides services to multiple disciplines across many industries.  The common thread was communication through visualization of a project.  Whether through technical drawings or illustrative renderings, Cadnetics can put a computer two work with purpose.  Students were struck by the fact that this local company is having a national and even global impact through their knowledge of CAD.

The most important lesson students gleaned during our trip was that the company covets students with short term, 1-2 year, technical degrees.  Cadnetics values employees with very specified skill sets.  James commented that jack-of-all-trade graduates with 4-year degrees often lack the ability to produce results efficiently.  This was a refreshing perspective from an employer who is constantly looking for talent to grow his business. Students need to see that a 4-year degree is not the only path that can lead to success.  Perhaps one of my CAD students will work for Cadnetics one day.

CADD Connections: Robert Morris University’s Department of Engineering

One of the most rewarding challenges for a classroom teacher is to use curriculum as a means to connect students to their desired end, to stimulate their thinking and illuminate possible career paths. Facilitated by STEM Career Tours, students enrolled in the Introduction to Computer-Aided Design and Drafting course at Cardinal Wuerl North Catholic High School were able to see how their newly acquired skills are put to work in Greater Pittsburgh. This blog will highlight student experiences on the second stop of the STEM tour, Robert Morris University’s Department of Engineering.

Students immediately contrasted the scale of RMU’s STEM efforts to our own at CWNC. They were blown away by the amount of computer aided machinery available to the engineering students. As a teacher, it was encouraging to hear phrases like “I might just apply here,” and “wait, you mean students can use all of this?”

In our CADD class, students have been using software to create digital models. At RMU, students got to see how these models can be fabricated through the manufacturing process. Computer-aided manufacturing (CAM) was on full display in the department of engineering, and it peaked students’ curiosity and creativity. They wondered how a 2D drawing could be used to guide the arm of a robotic router and etch a precise name into a plastic block. They also mused about the countless other applications of this technology. Seeing this inspired me to push the curriculum further in future iterations of this course. It is my goal to provide opportunities for students to fabricate their own drawings and complete the CADD-CAM loop.

Our trip to RMU gave students a taste of what it would be like to continue to develop their CADD skills at the university level, they also got a literal taste of college when we stopped for lunch at a campus dining hall. Over lunch, I had the opportunity to chat with some students about their experience. Flashy highlights included the laser scanner that can generate a 3D CADD model from live readings in real-time and the massive machine responsible for pressing out plastic molds, but the most impactful comments involved a deeper realization. Students recognized that the seemingly simple skills they are developing in class are being honed at universities across the nation and deployed to solve some of our generations most pressing challenges. For example, we learned CADD-CAM is assisting concussion research and the development of prosthetics for amputees.

I like to change the narrative on the classic question “what do you want to do when you grow up?” Instead, I ask students what problem they are interested in solving with their life’s work. On this stop of our STEM Careers Tour, students saw that RMU is asking the same question of its engineering students.

CADD Connections: Michael Baker International

One of the most exciting aspects of a classroom teacher’s job is to connect their curriculum to real-world applications.  Facilitated by Grow a Generation’s STEM Career Tours, students enrolled in the Introduction to Computer-Aided Design and Drafting course at Cardinal Wuerl North Catholic High School were able to see how their newly acquired skills are put to work in Greater Pittsburgh.  This blog will highlight student experiences on the first stop of the STEM tour, Michael Baker International.

Our experience at Michael Baker immediately validated the CADD curriculum at CWNCHS.  Students had the opportunity to see the actual models used in the construction and renovation of our roadways.  The models were generated using the same computer software we use in the classroom.  In fact, the models looked strikingly similar to the types of projects students had been completing throughout the first semester.  Although the projects were more robust, drafters had to use the same skills to develop them.


Tiahjure Harp, Zachary Diethorn, Ryan Baranowski, Nicholas Habrle, and Teacher David Yackuboskey from Cardinal Wuerl North Catholic visiting Michael Baker on a STEM Career Tour

Students work with the bridge inspector, training software.  Yet another example of computers facilitating the field of transportation engineering.





One of the critiques of the course from one student’s perspective, Landon Pringle – a junior at CWNC, is that the content can be “tedious, and kind of boring.”  That same student couldn’t imagine the amount of detail oriented effort if would take to create such a model.  When asked for his thoughts, Landon replied, “I don’t think I could be a transportation engineer.  I mean it’s cool, but painstaking.”  From a teacher’s perspective, it means a lot to see that the skills used in the classroom are necessary in the work place.  Being able to reveal that to a student is what teaching is all about, even if they realize this particular career field doesn’t fit their skill set.

The CADD curriculum at CWNCHS emphasizes the capability of computers to increase, Precision, Efficiency, and Communication in the design process.  Of these three, Efficiency in the field of transportation engineering, was on full display at Michael Baker International.  Representatives showcased Michael Baker’s very own software that automates computer generated renderings of bridge cross-sections.  By simply inputting a few dimensions that are specific to the project, a drafter can efficiently compile a set of drawings to be quality checked by an engineer.  A second tool Michael Baker highlighted was bridge inspection, training software.  Students used the same software bridge inspectors are trained with to examine a virtual bridge; they navigated an environment, selected tools and analyzed structural concerns.  While this not a drafting application it is a prime example of using computers to increase efficiency in the field of transportation engineering.  

All in all, the time spent with Michael Baker International enriched the classroom experience.  CWNCHS is grateful for the opportunity to team up with STEM Career Tours and provide this trip for our students.









Huge Magnets Map Tiny Proteins

AP Biology students from Cardinal Wuerl North Catholic High School visited the Department of Structural Biology at the University of Pittsburgh. Students were led on a tour by Dr. Rieko Ishima, an associate professor and a principal investigator in the department. Dr. Ishima oversees a team of research associates and fellows who are currently working to determine protein structure and dynamics using nuclear magnetic resonance.

Protein images are beyond tiny! The nuclear magnetic resonance spectroscopy of proteins does not ‘take a picture.’ Rather, it relies on complex mathematical calculations to build a three dimensional image of the protein.

During Dr. Ishima’s tour, students were shown various equipment used in cryo-electron microscopy, nuclear magnetic resonance, and x-ray crystallography. Students were fascinated not only by the incredible detail achieved in the digital images produced by nuclear magnetic resonance (NMR), but also by the sheer size of the equipment required to generate those results.

Though NMR examines molecular structure and dynamics at the atomic level, the spectrometers required to view particles that small are extremely large. Pitt has seven spectrometers in this department, and they are housed in 10,000 square foot laboratory. The students were amazed to learn that when the spectrometers were delivered, the first floor windows were removed to allow the equipment to be lowered into the NMR lab! We are standing in front of a two magnets that had to be lowered by crane through an open window.

Students were also able to tour the cryo-electron microscope facility, where three electron microscopes allow researchers to engage in structural analysis of proteins, viruses, cellular organelles and bacterial cells. Finally, Dr. Ishima and her team led students to the x-ray crystallography lab. Here, researchers are able to grow, store, and monitor crystals. Once crystals are ready for analysis, x-ray beams and image plate detectors are used to collect data about protein structures at the atomic level. While scientists in the lab often use tiny tools to manually transfer crystals for analysis, the lab also is equipped with a robot that can mount and collect data from up to 80 crystals for rapid analysis.

The field is extraordinary.

Did you know Zebrafish Embryos are Transparent?

On November 18, 2016, AP Biology students from Cardinal Wuerl North Catholic High School participated in a STEM Careers Tour which included a visit to the Department of Developmental Biology at the University of Pittsburgh. Specifically, students were able to interact with Dr. Michael Tsang, an associate professor who is currently conducting research in Pitt’s zebrafish aquaria. In the zebrafish facility, one of the largest in the world, researchers are engaging in multiple large-scale projects which use the zebrafish to understand how organs such as the liver, kidney and heart develop in the embryo.

The visit began with a presentation by Dr. Tsang, during which he explained his research and the benefits of experimenting with zebrafish. Students learned that zebrafish are ideal subjects for experimentation because they are small and easily maintained, embryos are transparent and easily visualized during development, and they are able to repair and regenerate damaged tissue. All of the students were fascinated when they learned that, after a few weeks at the bottom of the tank, zebrafish that have sustained a severed spinal cord are able to repair the damage and regain mobility!

After this presentation, students were able to experience a tour of the zebrafish aquaria, which contains over 11,000 tanks housing over 500,000 zebrafish. While touring the facility, students asked a wide variety of questions about the logistics in place to maintain such a large research lab, and they learned that while the tanks are self-cleaning, university employees spend several hours each day feeding the fish. The rows of tanks with tiny, newly-hatched fish were a highlight of the tour, but the students were most intrigued by the fluorescent green zebrafish. These genetically modified fish carry the gene for Green Fluorescent Protein (GFP), which allows researchers to better identify abnormalities, such as those that lead to Alzheimer’s Disease.

Most importantly, students engaged in dialogue with Dr. Tsang about both the benefits and ethical obligations of animal testing. The visit to the lab, and particularly this conversation with Dr. Tsang, ignited a desire in many of the students to pursue ongoing research with zebrafish. Sixteen AP Biology students from Cardinal Wuerl North Catholic are preparing experimentation results currently being conducted with both adult and embryonic zebrafish for entry into the Pittsburgh Regional Science and Engineering Fair! Mrs. Murray classroom is becoming its own zebrafish aquaria and the contacts she made on the tour have become mentors in her ongoing efforts to make biology come to life for all her students.


Page 2 of 4

Powered by WordPress & Theme by Anders Norén